تاثیر مواد معدنی بر سلامت سم
محورهای موضوعی : سایر علوم وابستهفاطمه کهنسال 1 * , مرضیه فائزی 2
1 - دانشجو، گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه فردوسی، مشهد
2 - دانشجو، گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه تهران، تهران
کلید واژه: سم, کراتینه شدن, مواد معدنی شلاته شده, مس, روی,
چکیده مقاله :
کیفیت سم به عنوان مجموعهای از ویژگیهای بافت شاخی سم، شکل سم و آناتومی و فیزیولوژی ساختار داخلی سم شناخته میشود و سلامت سم به نوبه خود با تولید بافت شاخی مقاوم و با کیفیت تعیین میشود. یکپارچگی عملکردی بافت شاخی سم اساساً به تمایز مناسب، یعنی کراتینه شدن سلولهای اپیدرمی سم بستگی دارد. کنترل و تعدیل کراتینه شدن اپیدرم سم توسط انواع مولکولها و هورمونها صورت میگیرد. این فرآیند به تامین مناسب مواد مغذی از جمله ویتامینها، مواد معدنی و عناصر کمیاب بستگی دارد. تنظیم و کنترل تمایز و جریان مواد مغذی به سلولهای اپیدرمی نقش اساسی در تعیین کیفیت و در نتیجه یکپارچگی عملکردی بافت شاخی سم دارد. کاهش عرضه مواد مغذی به سلولهای اپیدرمی کراتینهکننده منجر به تولید بافت شاخی با کیفیت پایینتر و افزایش حساسیت آن به آسیبهای شیمیایی، فیزیکی یا میکروبی محیط میشود. شواهد زیادی نشان میدهد که هورمونها، ویتامینها، مواد معدنی و عناصر کمیاب نقش مهمی در رشد طبیعی بافت شاخی سم و تشکیل صحیح کراتین دارند. افزایش فراهمی زیستی مواد معدنی کمیاب، استفاده از آنها را بهبود میبخشد و میتواند به بهبود یکپارچگی بافتهای کراتینه شده کمک کند.
The claw quality is a product of claw shape, characteristics of the horn and anatomy of the inner structure. Hoof health is largely determined by the production of good quality horn of adequate resistance. The functional integrity of hoof horn essentially depends on a proper differentiation, i.e., keratinization of hoof epidermal cells. Keratinization of hoof epidermis is controlled and modulated by a variety of bioactive molecules and hormones. This process is dependent on an appropriate supply of nutrients including vitamins, minerals, and trace elements. Regulation and control of differentiation and nutrient flow to the epidermal cells play a central role in determining the quality and, consequently, the functional integrity of hoof horn. Decreasing nutrient supply to keratinizing epidermal cells leads to horn production of inferior quality and increased susceptibility to chemical, physical, or microbial damage from the environment. A growing body of evidence suggests that hormones, vitamins, minerals, and trace elements play critical roles in the normal development of claw horn and correct keratin formation. Increasing the bioavailability of trace minerals improves their utilization and thus contributes to an improved integrity of keratinized tissues.
1. Tomlinson D, Mülling C, Fakler T. Invited review: formation of keratins in the bovine claw: roles of hormones, minerals, and vitamins in functional claw integrity. Journal of dairy science. 2004;87(4):797-809.
2. Mülling C, Bragulla H, Reese S, Budras K, Steinberg W. How structures in bovine hoof epidermis are influenced by nutritional factors. Anatomia, histologia, embryologia. 1999;28(2):103-8.
3. Mülling C, editor The use of nutritional factors in prevention of claw diseases-Biotin as an example for nutritional influences on formation and quality of hoof horn. 11th International Symposium on Disorders of the Ruminant Digit Parma, Italy: Organizing Secretariat, New Team; 2000.
4. Lisgara Μ, Skampardonis V, Leontides L. Effect of diet supplementation with chelated zinc, copper and manganese on hoof lesions of loose housed sows. Porcine health management. 2016;2(1):1-9.
5. Ballantine H, Socha M, Tomlinson DAD, Johnson A, Fielding A, Shearer J, et al. Effects of feeding complexed zinc, manganese, copper, and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction, and lactation performance. The professional animal scientist. 2002;18(3):211-8.
6. Miles RD, Henry PR. Relative trace mineral bioavailability. Ciência Animal Brasileira. 2000;1(2):73-93.
7. Carter SDJ. Absorption of chelated minerals: Texas Tech University; 1996.
8. Brown T, Zeringue L. Laboratory evaluations of solubility and structural integrity of complexed and chelated trace mineral supplements. Journal of Dairy Science. 1994;77(1):181-9.
9. Yost G, Arthington J, McDowell L, Martin F, Wilkinson N, Swenson C. Effect of copper source and level on the rate and extent of copper repletion in Holstein heifers. Journal of dairy science. 2002;85(12):3297-303.
10. Politiek R, Distl O, Fjeldaas T, Heeres J, McDaniel B, Nielsen E, et al. Importance of claw quality in cattle: Review and recommendations to achieve genetic improvement. Report of the EAAP working group on “claw quality in cattle”. Livestock production science. 1986;15(2):133-52.
11. Wedekind K, Hortin A, Baker D. Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. Journal of animal science. 1992;70(1):178-87.
12. Vermunt J, Greenough P. Structural characteristics of the bovine claw: horn growth and wear, horn hardness and claw conformation. British veterinary journal. 1995;151(2):157-80.
13. Lean I, Westwood C, Golder H, Vermunt J. Impact of nutrition on lameness and claw health in cattle. Livestock Science. 2013;156(1-3):71-87.
14. Godwin K. Skin, hair and nail in protein malnutrition. World review of nutrition and dietetics. 1961;3:103-28.
15. Budras K, Geyer H, Maierl J, Mülling C, editors. Anatomy and structure of hoof horn (Workshop report). 10th International Symposium on Lameness in Ruminants; 1998: University of Zurich, Switzerland.
16. Osorio J, Batistel F, Garrett E, Elhanafy M, Tariq M, Socha M, et al. Corium molecular biomarkers reveal a beneficial effect on hoof transcriptomics in peripartal dairy cows supplemented with zinc, manganese, and copper from amino acid complexes and cobalt from cobalt glucoheptonate. Journal of dairy science. 2016;99(12):9974-82.
17. Fraser R, MacRae T, Rogers GE. Keratins: their composition, structure and biosynthesis. 1972.
18. Bach A, Pinto A, Blanch M. Association between chelated trace mineral supplementation and milk yield, reproductive performance, and lameness in dairy cattle. Livestock Science. 2015;182:69-75.
19. Nocek J, Johnson A, Socha M. Digital characteristics in commercial dairy herds fed metal-specific amino acid complexes. Journal of dairy science. 2000;83(7):1553-72.
20. Griffiths L, Loeffler S, Socha M, Tomlinson D, Johnson A. Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology. 2007;137(1-2):69-83.
21. Zhao X-J, Li Z-P, Wang J-H, Xing X-M, Wang Z-Y, Wang L, et al. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. Journal of Veterinary Science. 2015;16(4):439-46.
22. Ziegler EE, Filer Jr L. Present knowledge in nutrition. 1996.
23. Siciliano-Jones J, Socha M, Tomlinson D, DeFrain J. Effect of trace mineral source on lactation performance, claw integrity, and fertility of dairy cattle. Journal of Dairy Science. 2008;91(5):1985-95.
24. Langova L, Novotna I, Nemcova P, Machacek M, Havlicek Z, Zemanova M, et al. Impact of nutrients on the hoof health in cattle. Animals. 2020;10(10):1824.
25. Zhao X-J, Wang X-Y, Wang J-H, Wang Z-Y, Wang L, Wang Z-H. Oxidative stress and imbalance of mineral metabolism contribute to lameness in dairy cows. Biological Trace Element Research. 2015;164(1):43-9.
26. NRC I. Nutrient requirements of dairy cattle. National Research Council. 2001;519.
27. Demertzis P. Oral zinc therapy in the control of infectious pododermatitis in young bulls. The Veterinary Record. 1973;93(8):219-22.
28. Moore C, Walker P, Winter J, Jones M, Webb J. Zinc methionine supplementation for dairy cows. Transactions of the Illinois State Academy of Science. 1989;82(3-4):99-108.
29. Brazle F. Effect of Zinpro 100 in a mineral mixture on gain and incidence of footrot in steers grazing native grass pastures. Kansas State University Report of Progress. 1993;678:144.
30. Miller J, Ramsey N, Madsen F. Pages 342–400 in The Trace Minerals in the Ruminant Animal. DC Church, ed. Prentice Hall, Englewood Cliffs, NJ; 1988.
31. van Marle-Kӧster E, Pretorius S, Webb EC. Morphological and physiological characteristics of claw quality in South African Bonsmara cattle. South African Journal of Animal Science. 2019;49(5):966-76.
32. Kinal S, Korniewicz A, Jamroz D, Zieminski R, Slupczynska M. Dietary effects of zinc, copper and manganese chelates and sulphates on dairy cows. J Food Agric Environ. 2005;3(1):168-72.
33. Nemec L, Richards J, Atwell C, Diaz D, Zanton G, Gressley T. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. Journal of dairy science. 2012;95(8):4568-77.
34. Spears JW. Trace mineral bioavailability in ruminants. The Journal of nutrition. 2003;133(5):1506S-9S.
35. El Ashry GM, Hassan AAM, Soliman SM. Effect of Feeding a Combination of Zinc, Manganese and Copper Methionine Chelates of Early Lactation High Producing Dairy Cow. Food & Nutrition Sciences. 2012;3(8).
36. McDowell LR. Recent advances in minerals and vitamins on nutrition of lactating cows. Pakistan Journal of Nutrition. 2002;1(1):8-19.
37. Scaletti R, Harmon R. Effect of dietary copper source on response to coliform mastitis in dairy cows. Journal of dairy science. 2012;95(2):654-62.
38. Formigoni A, Fustini M, Archetti L, Emanuele S, Sniffen C, Biagi G. Effects of an organic source of copper, manganese and zinc on dairy cattle productive performance, health status and fertility. Animal feed science and technology. 2011;164(3-4):191-8.
39. Drendel T, Hoffman P, Socha M, Tomlinson D, Ward T. Effects of Feeding Zinc, Manganese, and Copper Amino Acid Complexes and CobaltGlucoheptonate to Dairy Replacement Heifers on Claw Disorders. The Professional Animal Scientist. 2005;21(3):217-24.
40. Karkoodi K, Chamani M, Beheshti M, Mirghaffari SS, Azarfar A. Effect of organic zinc, manganese, copper, and selenium chelates on colostrum production and reproductive and lameness indices in adequately supplemented Holstein cows. Biological trace element research. 2012;146(1):42-6.
41. Nocek J, Socha M, Tomlinson D. The effect of trace mineral fortification level and source on performance of dairy cattle. Journal of Dairy Science. 2006;89(7):2679-93.
42. Smith M, Amos H, Froetschel M, Harris B, Larsen L. Influence of ruminally undegraded protein and zinc methionine on milk production, hoof growth and composition, and selected plasma metabolites of high producing dairy cows. The Professional Animal Scientist. 1999;15(4):268-77.
43. Gressley TF, editor Zinc, copper, manganese, and selenium in dairy cattle rations. Proceedings of the 7th annual mid-Atlantic nutrition conference; 2009: University of Maryland, College Park MD, USA.
44. Andrieu S. Is there a role for organic trace element supplements in transition cow health? The Veterinary Journal. 2008;176(1):77-83.
45. Gayathri S, Panda N. Chelated minerals and its effect on animal production: A review. Agricultural Reviews. 2018;39(4):314-20.
46. Murphy RA. Chelates: clarity in the confusion. JUNE 25, 2009.
47. Guetschow K. Understanding Chelated Minerals. June 3, 2013.
48. Genther O, Hansen S. The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. Journal of Dairy Science. 2015;98(1):566-73.
49. Spears JW. Organic trace minerals in ruminant nutrition. Animal feed science and technology. 1996;58(1-2):151-63.
50. Twardoń J, Kinal S, Preś J, Słupczyńska M, Bodarski R, Zachwieja A, et al. The influence of biotin and Zn-methionine application on dairy cows hoofs condition. Electronic Journal of Polish Agricultural Universities. 2009;12(4).
51. Randhawa SS, Dua K, Singh R, Dhaliwal P, Sharma A. Effect of supplementation of zinc methionine on claw characteristics in crossbred dairy cattle. Indian Journal of Animal Sciences. 2012;82(3):304.